Segmentation Basic

Bay Area Woodturners Association
Jan \& Feb, 2010

David Vannier
dsvannier@yahoo.com
http://www.westbaywoodturner.com/

In January We....

\square Did an overview of Process
\square Picked A Shape
\square Discussed Feature Rings and Selected A Chain Pattern for our Feature Ring

Today We Will

\square Finish Our Planning \& Create A Cut List
\square Show How To Make The Chain Pattern
\square Discuss Jigs \& Fixtures
\square Show How to build this vessel in two halves
\square Maybe we can talk Warren into showing us how to turn the bottom first

Placing the chain feature ring on our vessel

Now we need to "divide" the vessel into Rings

\square Start with the base
■ Bases must be solid wood

- Burl is one way of minimizing wood movement problems
- See Malcolm's book for a "floating base"

■ The thicker the base, the heavier the vessel

- Minimum thickness of the base is determined by making sure that the inside is turned into the solid base

Place a $3 / 4$ " Thick base

Continue Placing 3/4" Rings up to Feature Ring

Now Work from Feature Ring to Top

This Leaves The top ring as
 1/8" Thick

- This is a little too thin for my tastes
\square Adjust the top to $1 / 4^{\prime \prime}$ thick
\square Shrink the rings below
\square Either equal Reduction or out of the "larger ring"
- Larger is defined by surface area
- In this case, I reduced Ring 8 by $1 / 8^{\prime \prime}$ to 5/8" thick

Leaving Us With this design

This is a good time to decide on wood types. I selected...

\square Purple heart for the base \& top

- Start \& stop with the same wood
\square Cherry wood for Ring 1, 2, 3, 7, \& 8
\square Maple for Ring 4 \& 6
\square Bloodwood \& Maple for the Feature
\square Veneer could be added between rings
3 \& 4, as well as rings 6 \& 7

Next: Size the rings
\square Mark and Measure the largest diameter for the outside of each ring
\square Mark and Measure the smallest diameter for the inside of each ring

Sizing the Rings

Now select the Number of
Segments/Ring. So How?
\square Long segments on small vessels don't look as good, I shoot for less than 3"
\square Large vessels can use large segments
\square "Guesstimate" Minimum number of segments = Max Vessel Diameter
■ In Our case, this is $9^{\prime \prime}$, or 9 Seg/Ring

What are the options?

\square Divide 180 by the number of segments to get the cutting angle
\square My segment options are:

- $2,3,4,5,6,8,9,10,12,15,18,20$, $24,30,36,40,60,72,80,90,120,180$, 360 per ring
- My cutting sled works in $1 / 2$ degree increments
- If You Make Your Own sled or sanding jig (later), other options are possible

Rings that can be built in Halves are Easiest

\square Will explain when we discuss gluing
the segments into rings
\square Doing More than 24 segments per ring can be tough to apply glue and clamp before the glue dries
\square With this in mind, my options were

- 10, 12, 18, 20 , or 24
- I picked 12 segments/ring

3 Methods of determining

 Segment Lengths\square Option A - Measuring off a graph

- Extremely accurate, requires make your own graph
\square Option B - Using a table
■ Fast \& Easy, Not the most accurate
\square Option C - Using an excel spread sheet

■ Produces a printed cut sheet, requires sitting in front of a computer

Option B) Using The table

\square Read the Segment Length off a table - Don't forget to add $1 / 4{ }^{\prime \prime}$
\square Then measure the segment Width off our vessel drawing
\square Estimate the length of board required to cut the segments by taking the maximum diameter x 3.14 (PI) And adding board to hold down (~ 6 ")

Using a Table: By Ken Horner

\square See separate file: From More Woodworkers by Ken Horner.pdf

Determining the Widths

Option C) My Excel Spread Sheet

\square Enter
■ \# of segments/ring

- Ring Thickness

■ OR - Largest Outside Radius (= $1 / 2$ diameter)
■ IR - Smallest Inside Radius (= $1 / 2$ diameter)
\square Guardband are preset to $1 / 4$ "
■ I've used $1 / 8^{\prime \prime}$
\square Segment Lengths and Widths are calculated
$\square B L=$ Board Length. Note this does NOT include extra wood to hold on to

Feature Ring = 24 segments

\square For 12 segments, the segment is 2 9/16" long. Too long.
\square Vertical "spacers" are $1 / 4$ "
\square Cut the Segment Lengths to $1^{\prime \prime}$

- $1 \frac{1}{4}$ minus $1 / 4^{\prime \prime}$ (spacer)
\square Cut 24 spacers, \& 12 of each of the chain pieces
■ This will be tough to glue!

How about CAD packages that are available?

\square I've found them cumbersome to enter the shape
\square Stuck with whatever assumptions the software makes
\square Bottom line: Not worth the money in my humble opinion

So now we have a cut list

\square Next we need to prepare some wood
\square Then we can

- Cut the segments
- Glue the rings
- Build the vessel
- Turn the vessel

Board Sizes

\square Min Board Width = Segment Width

- Larger is ok
- Different widths in the same ring is also ok
\square Board Lengths can be approximated by the circumference of the circle (diameter x PI)

Preparing the wood required to make the Chain Pattern

\square Make 2 strips:

- $1 / 4^{\prime \prime}$ (blue) $+1 / 2^{\prime \prime}$ (white) $+1 / 4^{\prime \prime}$ (blue)

■ 3/8" (white) $+1 / 4^{\prime \prime}$ (blue) $+3 / 8^{\prime \prime}$ (white)
\square Make 1 strip $1^{\prime \prime}$ thick (blue) for vertical spacers
\square Remember to keep all the grain running horizontal

For This example, I used

\square Bloodwood for the "blue"
\square Maple for the "white"
\square The Strips are $1^{\prime \prime}$ high, $1^{\prime \prime}$ wide, and XX" long

Cutting Segments

\square Table saw with a Sled
\square Chop saw
\square Any cutting method, followed by using a disc sander

I use an Incra 5000 sled

Making Your Own Sled
 http://www.turnedwood.com/framesled.html

Jig for your Disc Sander

The Art of Segmented Woodturning by Malcolm Tibbetts

Dry Fit Every Ring Before Making Changes To Your Setup

\square I use hose clamps to hold the segments together
\square Don't over tighten the clamps

- We AREN'T trying to FORCE the wood to fit!
\square Hold the ring up to a bright light, checking each joint for light
\square Keep things clean!

If They Don't Fit

Either Cut Again OR
Glue Up partial Rings \& clean up
before final gluing
OR
Take to the disc sander and make the segments fit

Gluing Up A Perfect Ring

\square Apply glue to both sides of every other piece
\square Lightly rub joints to spread glue
\square As you tighten the clamp, hold down/press down the segments to make sure they are flat
\square I use Melamine as a glue surface

- Wax paper works as well

Gluing a ring that isn't perfect

Option A)
■ Glue up in Pairs

- Then pairs of pairs, etc until halves are glued
- Make halves perfect, sander or saw

Option B)
■ Use toothpicks to space halves

- Apply glue to all other surfaces \& clamp

■ Make the halves perfect, sander or saw

With the rings glued, flatten one surface

1. Use Hot Melt Glue to Tack the ring to a large faceplate
2. Turn the top surface flat
3. Use a "sanding stick" to clean up and make sure it is flat
\square Cole Jaws can be used for step 1
\square Drum sanders can be used, but watch out for "snipe"

Using The Flattening Stick

Warning: If you press to the right of center, the board will lift and snap back down against the tool rest. You can pinch you hand badly!

Adding the Ring to the stack Alignment is Critical

\square Start by turning the pieces already glued round. Not to shape, just round.
\square Pick a seam on both rings and align these seams
\square Now align the seams on the other side, 180 degrees
\square Keeping these two seams aligned, slide the rings back an forth to align seams at 90 degrees
\square Clamp in place

Step 1: Mark joints 180 degrees apart

Ring to be added

Step 2: Align these marks

Step 3: Mark \& Align at 90 degrees

Step 4: Tack blocks to keep rings from slipping

Clamping can be done with
\square Lathe
\square Drill press
\square Clamps
$\square \mathrm{Jig}$

Continue process until you have two halves

\square Pin the two halves together on the lathe
■ I use the Oneway tailstock with a hub
\square Turn the outside to shape
\square Separate and turn the insides of the two halves
\square Glue two halves together
\square Part top faceplate off

Finish turning \& sanding inside and out

\square Only leaves the bottom
\square I use a "donut chuck" to hold the vessel while I complete this
■ http://azwoodturners.org/DoughnutChuc k.pdf by Art Liestman
\square Warren turns and finishes the bottom first, eliminating the need to do this step

As a minimum you need

\square To Make a Sanding stick
\square Make a large "face plate" to flatten rings
\square Band clamps
\square At least 2 face plates
\square Table saw \& sled or chop saw or band saw and disc sander with jig
\square Dry \& square wood stock

Reference Books \& Web Sites

\square http://www.turnedwood.com - Kevin Nelley
\square WoodTurning with Ray Allen by Dale Nish
\square The Art of Segmented Wood Turning by Malcolm's Tibbetts

